
Facial Recognition with Eigenfaces and Fisherfaces
Anya Jensen and Noah D’Souza

September 26, 2018

Abstract

This report details the concepts, math, and implementation of eigen-
faces and fisherfaces for facial recognition.

We begin with eigenfaces, which uses principal component analy-
sis (PCA) to create a set of images that can be put together in varying
amounts to create a face, and then match that face to an existing im-
age of a face.

Next, we use fisherfaces for facial recognition. Fisherfaces imple-
ments linear discriminant analysis (LDA), which takes differences
between pictures of various people into account more than it takes
into account the differences between varying pictures of the same
person. This theoretically could make the facial recognition algorithm
more accurate.

We compare the performance of both algorithms to see which is
best equipped to run facial recognition on a pre-prepared database
of images of people, wherein there is more than one image of each
person within the database. The algorithms will be assessed based on
their accuracy in matching faces and their computational robustness
and speed.

Introduction

Facial recognition is the process of matching a picture of one face to a
different picture of the same face. It has various applications in fields
such as security and criminal justice.

We will use two related methods of facial recognition, eigenfaces
and fisherfaces, and implement a program than can identify and
match a person’s face with another picture of them, or at the very
least the most mathematically similar image in the programâĂŹs
set. We will discuss which algorithm is more effective, and in which
scenarios a specific algorithm is more useful.

To start, we will implement eigenfaces by explaining the math
behind singular value decomposition (SVD) and PCA. We will then
move on to fisherfaces and explain how much it is related to eigen-
faces mathematically, but differs and builds upon it in key forms
(such as the introduction of LDA).



facial recognition with eigenfaces and fisherfaces 2

Eigenfaces

1.1 Introduction
A picture of a face can be represented as a combination of eigen-

faces. For example, a person’s face can be made up of 10% of eigen-
face 1, 7% of eigenface 2, etc. in a set of eigenfaces. An eigenface is
generated by executing Principal Component Analysis (PCA) on a
large set of training images, which we will discuss in the following
section.

To develop facial recognition through eigenfaces, begin by ac-
quiring a set of images (preferably in the same lighting conditions
and face positions). Set aside some amount of these to be used as a
testing set, and the remaining M images will be used as training data.

1.2 Computation
In this implementation, all the of the images are nxn pixels in size

(our images were 256x256 pixels). Now, transform each image into a
column vector, and then place the column vectors into an n2xm sized
matrix of all the images. This will simplify much of the future matrix
computations involved in PCA. Let each column vector be called Γi,
where i is the index of the image as a column vector. Do the same
with the test images in a separate matrix, I.

Figure 1a

This image is the average face from a
set of faces.As you can see, many of
the features are blurred together, and
many features are just overlapping (i.e.
people smiling and not smiling and
multiple sets of glasses appearing on
the average).

Start by finding the average Ψ of the training set

Ψ =
1
M

M

∑
n=1

Γn

An average face can be seen in figure 1a.
where M is the number of images in the training set, and Γ is the

images in the training set. This will allow us to mean-center our
images using the equation

Φi = Γi − Ψi

Mean-centering the images reduces unnecessary variation.
The new mean-centered data can be used to find the covariance

matrix C of the set, which is defined as

C =
1
M

M

∑
n=1

ΦnΦT
n

The covariance matrix represents the variation of every data point
from the mean of the set in n2-dimensional space. In addition, the
set of eigenvectors U of this covariance matrix produces our set of
eigenfaces. You can see an image of an eigenface in figure 1b.

Figure 1b

This image shows an eigenface from
our training images. It has very unde-
fined features, but appears to be much
more cohesive than the average face in
figure 1a.

Now that the eigenfaces have been isolated from the covariance
matrix, we must find the weights of the eigenfaces within each image



facial recognition with eigenfaces and fisherfaces 3

by separately multiplying the transpose of the eigenfaces by the
mean-centered image vectors and by the test image vectors I

Ωtraining = UTΦ

Ωtest = UT I

Where Ωtraining is the weight for the training set and Ωtest is the
weight for the test set.

The weights represents how much of each eigenface is needed to
form an image of a specific face. Note: not all of the eigenfaces are
needed to produce accurate results, as some of them (usually the first
ones in the set) are more "important" than ones later in the set. This
implementation only used the first 40 eigenfaces.

The resulting matrices Ωtraining and Ωtest contain eigenface point
representations of the images in eigenspace, which is essentially a
compressed, eigenvector based version of the in n2-dimensional space
from previous sections. This entire process is known as principal
component analysis.

1.3 Recognition
Mathematically speaking, points in eigenspace that represent

different images of the same people should be close together relative
to images of other people, therefore to match a face from the test set
to and image in the training set, all one has to do is find the nearest
training image point to the test image’s point in eigenspace. This is
done by taking the euclidean distance between the test image’s point
and all the training image points

ε =

√√√√ M

∑
n=1

(
Ωtestn − Ωtraining

)2

The training image point corresponding to the smallest euclidean
distance is what the eigenface program believes to be a match.

Fisherfaces

2.1 Introduction
Fisherfaces also implements eigenfaces, but it uses linear discrim-

inant analysis, or LDA. The main difference between fisherfaces and
eigenfaces is that fisherfaces implements classes. In this context,
classes are defined as a set of different pictures of the same person.
If the whole dataset has 100 images, and 20 pictures of each person,
then there would be five classes. This distinction of classes allows to
put more emphasis on the differences between individual people’s



facial recognition with eigenfaces and fisherfaces 4

faces and less emphasis on the differences between images of the
same person.

2.2 Computation
Fisherfaces implements many of the same steps as eigenfaces, and

mostly just expands on it as we explain later. For now, follow the
same steps at eigenfaces, up until you have your eigenfaces. Now we
will move onto the expansion fisherfaces has on eigenfaces.

In order to collapse variation within classes and expand variation
between classes, we must find the scatter of data within classes, (Sb),
and the scatter of data between classes, (Sw) such that:

Sb =
C

∑
i=1

N(µ1 − µ2)
T(µ1 − µ2)

Sw =
C

∑
i=1

M

∑
XkεXi

(U − µ2)
T(U − µ2)

N would be the number samples in class Xi, Xk would represent the
kth class in the set, and µi would be the mean image of class Xi while
µ would be the mean of all images. These two equations reduce the
differences inside classes so that point representations of images
of the same people are closer together in fisherspace (which is like
eigenspace, but with LDA factored in), and the point representations
of images of different people are farther apart in fisherspace.

The set of eigenvectors Wi of Sb and Sw is the set of fisherfaces
such that

SbWi = λiSwWi

with λi being the eigenvalues. This set of eigenvectors is used to
find the weights of each face (in a similar manner to the eigenfaces
algorithm) with the equations

Ftrain = WT
i UTΦ

Ftest = WT
i UT I

Figure 2

This image is a fisherface from our
training set. It appears to have more
defined features than those of the
eigenfaces. This image is used in some
amount to make full images in the
dataset.

which define Ftrain and Ftest. These two are the fisher equivalent
of Ω1 and Ω2 from eigenfaces, but this time in fisherspace. You can
see a fisherface in figure 2a. This process is essentially PCA with the
addition of classes, also known as linear discriminant analysis.

2.3 Recognition
The process of actually matching faces with fisherfaces is nearly

identical to that of eigenfaces. It once again involves taking the eu-
clidean distance between the test image and all training images, and



facial recognition with eigenfaces and fisherfaces 5

finding that the smallest distance begets a match, or at least the most
similar image such that

ε =

√√√√ M

∑
n=1

(
Ftestn − Ftrain

)2

Comparisons

We tested eigenfaces using 66 training images and 66 test images. We
tested fisherfaces using a different set of images; we used 129 training
images and 43 test images.

We found that fisherfaces were more accurate than eigenfaces,
correctly guessing 90.7% of our faces. eigenfaces were able to accu-
rately detect 89.4% of the faces we tested. eigenfaces, however, did
run much faster than fisherfaces, with a total runtime of .719 seconds
compared to fasherfaces’ 4.918 seconds runtime.

Figure 3

This graph shows the differences in
accuracy between fisherfaces and
eigenfaces. Both begin to plateau at
around 10 training images; however, the
accuracy for fisherfaces tends to vary,
whereas the accuracy for eigenfaces
tends to stay constant.

The accuracy of eigenfaces remains pretty steady at around 87%
once you pass 10 training images. Fisherfaces, however is much more
non-linear, and changes between an accuracy of around 95% and
78%. You can see this clearly in figure.

It is hard to make considerable conclusions from these statistics,
as the fisherfaces have much more training images and test images,
which could lead to the increased runtime.

Whether fisherfaces or eigenfaces is more useful depends on the
context. Eigenfaces could be useful in searching for ID photos or
mugshots in a database (especially if time is of the essence), as all the
photos were taken in the same lighting. They would not be useful
when searching for a face match given a shot from a security camera
as the test image.

Conclusion

In conclusion, fisherfaces make more sense in real-world settings,
where changes in lighting and position would make it necessary to
collapse variation between pictures of the same people. However,
when conditions are ideal, eigenfaces are a much faster method. Our
next steps would be testing our algorithms in more realistic settings,
where faces are blurry or turned at angles, and see how our algo-
rithms perform.



facial recognition with eigenfaces and fisherfaces 6

References

Belhumeur, Peter N, et al. Eigenfaces vs Fisherfaces: Recognition Using
Class Specific Linear Projection. 7th ed., vol. 19, 1997, pp. 711-720

Pentland, Alex, and Matthew Turk. Eigenfaces for Recognition. 1st
ed., vol. 3, Journal of Cognitive Neuroscience, 1991, pp. 72-86

Eigenface. Wikipedia, Wikimedia Foundation, 3 Apr. 2018, en.wikipedia.org/wiki/Eigenface


	Abstract
	Introduction
	Eigenfaces
	Figure 1a
	Figure 1b
	Fisherfaces
	Figure 2
	Comparisons
	Figure 3
	Conclusion
	References

